How energy efficiency is improved

Efficient use in continuous control systems

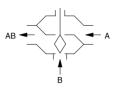
Features

- · Continuous control of cold and hot water in closed circuits¹⁾
- Water quality as per VDI 2035
- · In combination with AVP 242 valve actuators as control unit
- Not suitable for drinking water
- Valve with flange connection as per EN 1092-2, seal form B
- · Regulating valve, free of silicone grease, painted black
- The control passage is closed when the spindle is moved out
- Used as a control valve
- · Valve body and seat made of grey cast iron
- Stainless-steel spindle
- · Plug made of brass with glass-fibre reinforced PTFE sealing ring
- · Stuffing box made of brass with wiper ring and double O-ring seal made of EPDM

Technical data

Parameters

Parameters						
		Nominal pre	essure	PN 6		
		Connection		Flange	e as per EN 1092-2, form B	
		Valve chara F200	cteristic, control passage	Linear		
		Valve chara F300	cteristic, control passage	Equal-	percentage	
		Valve chara	cteristic, mixing passage	Linear		
		Control ratio	o of valve	> 50:1		
		Stuffing box		2 EPD	M O-rings	
		Leakage rat	e of control passage	< 0.05	% of k _{vs} value	
		Leakage rate, mixing passage		< 1% (of k _{vs} value	
		Valve stroke	9	8 mm		
Ambient condition	าร					
		Operating temperature ²⁾		-101		
		Operating p	ressure	Up to 120 °C; 6 bar At 150 °C; 5.4 bar Between 120 °C and 150 °C, a linear		
					blation can be performed	
Standards and dir	rectives					
	Pressu		sure and temperature data		EN 764, EN 1333	
		Flow parameters		EN 60534 (page 3)		
		Pressure Equipment Directive			EC (fluid group II) Elabel, article 3.3	
Overview of typ	es					
Туре	Nominal diameter		k _{vs} value		Weight	
BUD015F320	DN 15		1.6 m³/h		3.2 kg	
BUD015F310	DN 15		2.5 m³/h		3.2 kg	
BUD015F300	DN 15		4 m³/h		3.2 kg	
BUD020F300	DN 20		6.3 m³/h		4.1 kg	
BUD025F300	DN 25		10 m³/h		4.7 kg	
BUD032F300	DN 32		16 m³/h		7.1 kg	
BUD040F300	DN 40		22 m³/h		8.4 kg	
BUD050F300	DN 50		28 m³/h		10.9 kg	
BUD050F200	DN 50		40 m³/h		11.2 kg	
					-	


¹⁾ Air humidity must not exceed 75%

 $^{2)}~$ At temperatures below 0 °C, use a stuffing box heater. Use adaptor (accessory) at temperatures above 100 °C $\,$

BUD032F300

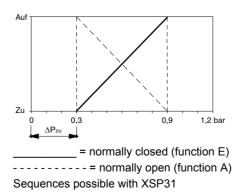
 \square

Accessories	
Туре	Description
0372240001	Manual adjustment for valves with 8 mm stroke
0372249001	Adaptor required when temperature of the medium is 100130 $^\circ C$ (recommended for temperatures < 10 $^\circ C$) DN 1550
0372249002	Adaptor required when temperature of the medium is >130 up to 150 °C, DN 1550
0378284100	Stuffing box heater 230V~, 15 W for medium below 0 °C
0378284102	Stuffing box heater 24V~, 15 W for medium below 0 °C
0378368001	Complete replacement stuffing box for DN 1550

Combination of BUD with pneumatic actuator

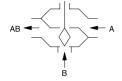
- *i* Warranty: The technical data and pressure differences indicated here are applicable only in combination with SAUTER valve actuators. The warranty does not apply if used with valve actuators from other manufacturers.
- *i* Definition of Δp_s : Maximum admissible pressure drop in the event of a malfunction (pipe break after the valve) at which the actuator reliably closes the valve by means of a return spring.
- *i* Definition of Δp_{max} : Maximum admissible pressure drop in control mode at which the actuator reliably opens and closes the valve.
- *i* The running time is based on the centair air flow rate (400 I_n/h) and on a supply line with a length of 20 m and a diameter of 4 mm.

Combination of BUD with pneumatic actuator AVP 242


Actuator	AVP242F001
Admissible pres- sure p _{stat}	≤ 6 bar
Running time	8 s

	∆p [bar]
As control valve	Δp_{max}	Δps
BUD015F320 BUD015F310 BUD015F300 BUD020F300 BUD025F300 BUD032F300	6.0	6.0
BUD040F300	4.0	4.0
BUD050F300 BUD050F200	2.5	2.5
Cannot be used as	distribution valve	

. ✓ At temperatures above 100°C, accessories are required


Pressure-stroke characteristic (with valve attached), characteristic not adjustable:

AVP242

The valve can be moved to any intermediate position with a pneumatic actuator. When the spindle is moved out, the control passage of the valve is closed. These valves may only be used as control valves. The flow direction marked on the valve must be observed. Use as a distribution valve is not permitted with pneumatic actuators, because this would cause pressure surges. The flow parameters correspond to EN 60534.

Used as a control valve

These control valves are characterised by their reliability and precision and make an important contribution towards environmentally friendly regulation. They meet challenges such as emergency functions, overcoming differential pressures, controlling medium temperatures and performing the shut-off function, all in a low-noise form.

The valve spindle is automatically and firmly connected to the actuator spindle. The brass plug controls the equal-percentage flow rate in the control passage. To compensate for the complementary characteristic of the consumer and ensure a constant quantity of medium regardless of the valve position, the mixing passage acts with a linear characteristic. The tightness of the valve is ensured by the seat incorporated in the body.

The stuffing box is maintenance-free. This consists of a brass body, two O-rings, a wiper ring and a grease reserve. This is free of silicone grease, and silicone oil may not be used for the spindle. The grease reserve stops particles that may be present in the medium from penetrating to the upper O-ring.

Intended use

This product is only suitable for the purpose intended by the manufacturer, as described in the "Description of operation" section.

All related product documents must also be adhered to. Changing or converting the product is not admissible.

Engineering and fitting notes

The actuator is mounted directly on the valve and fastened with screws. The actuator is connected with the valve spindle automatically. The closing point must be adjusted as described in the fitting instructions (MV 506012 AVP 242).

To increase the functional reliability of the valves, the system should conform to DIN/EN 14336 (heating systems in buildings). DIN EN 14336 states, amongst other things, that the system has to be flushed through before being put into service.

Technical information	
Pressure and temperature data	EN 764, EN 1333
Fluidic parameters	VDI/VDE 2173
SAUTER slide rule for valve sizing	P100013496
Parameters, fitting notes, control, general information	Applicable EN, DIN, AD, TRD and UVV regulations
Fitting instructions:	
DN 1550	MV 506008
AVP 242 F001	MV 506041
Declaration on materials and the environment	MD 76.111

Additional technical data

Fitting position

The control unit can be fitted in any position, but the hanging position is not recommended. Condensate, drops of water, etc. must be prevented from entering the actuator. When installed horizontally, without any structural support for the actuator, the maximum weight on the valve is 25 kg. When the actuator is mounted on the valve, make sure that the plug is not twisted on the seat (this may damage the sealing surface). When insulating the valve, it may only be insulated up to the connecting clip of the actuator.

Using with water

So that impurities are retained in the water (welding beads, rust particles, etc.) and the spindle seal is not damaged, we recommend installing collecting filters, for example one for each floor or pipe run. Water requirements according to VDI 2035.

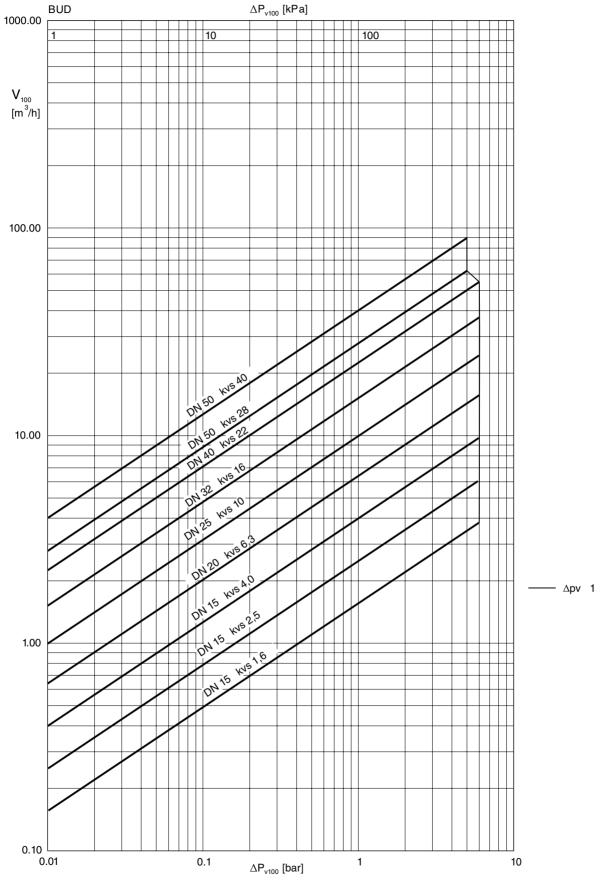
When using an additive in the water, the compatibility of the materials must be checked with the manufacturer of the medium. The materials table shown below may be used. When glycol is used, we recommend using a concentration of between 20% and 55%.

Other information regarding hydraulics and noise in systems

The valves can be used in a low-noise environment. To prevent noise, the pressure differences Δp_{max} listed below should not be exceeded.

The pressure difference Δp_{max} is the maximum pressure that may act on the valve regardless of the stroke position, in order that the risk of cavitation and erosion is limited. These values are irrespective of the actuator force. The cavitation accelerates wear on the plug and seat in the valve and causes noises. To prevent cavitation, the differential pressure should not exceed the value Δp_{krit} :

 $\Delta p_{krit} = (p1 - pv) \times 0.5$


p1 = upstream pressure before the valve (bar)

 p_V = steam pressure at operating temperature (bar)

The calculation works with absolute pressure.

Note that when the pressure difference Δp_{max} is exceeded, the valve can be damaged by cavitation and erosion. For the spring return, the stated Δp_s values are also the permissible differential pressure up to which the actuator can guarantee that the valve is closed in the event of an incident. Because this is a safety function with a fast stroke movement (using a spring), this value can exceed Δp_{max} .

1: Control valve

76.111

Туре	$\Delta \mathbf{p_V}$
	Used as a control valve
BUD015F320	6
BUD015F310	6
BUD015F300	6
BUD020F300	6
BUD025F300	6
BUD032F300	6
BUD040F300	6
BUD050F***	5

Additional version information

Valve body made of grey cast iron as per EN 1561, code EN-GJL-250, material number EN-JL 1040 with smooth drilled flanges as per EN 1092-2, seal form B. Valve body protected by matt paint RAL 9005 jet black. Recommended for the welding flange as per EN 1092-1. Valve fitting length as per EN 558-1, basic series 1. Flat seal on valve body made of asbestos-free material.

Material numbers as per DIN

	DIN material no.	DIN designation	
Valve body	EN-JL 1040	EN-GJL-250 (GG25)	
Valve seat	EN-JL 1040	EN-GJL-250	
Spindle	1.4305	X8CrNiS18-9	
Plug	CW617W	CuZn40Pb2	
Plug seal	PTFE		
Stuffing box	CW617W	CuZn40Pb2	

Additional details on the definitions of pressure difference

$\Delta \mathbf{p_v}$:

Maximum admissible pressure difference over the valve in each stroke position, limited by noise level and erosion.

This parameter characterises the valve as a flow element with specific hydraulic behaviour. Monitoring the cavitation and erosion along with the associated noise increases the service life and the operational capacity.

$\Delta \mathbf{p}_{max}$:

Maximum admissible pressure difference over the valve at which the actuator can reliably open and close the valve.

This takes account of static pressure and flow effects. This value ensures trouble-free stroke movement and closing of the valve. The value Δp_v of the valve is never exceeded.

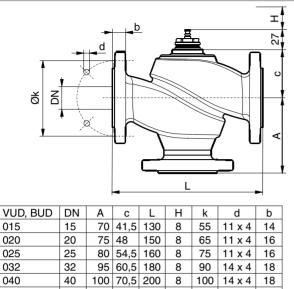
∆p_s:

Maximum admissible pressure difference over the valve in the event of a malfunction (e.g. power failure, excessive temperature or pressure, pipe break) at which the actuator can close the valve tightly and, if necessary, maintain the entire operating pressure against atmospheric pressure. Because this is a quick-closing function with a rapid stroke movement, Δp_s can be greater than Δp_{max} or Δp_v . The disruptive flow effects that arise here are quickly passed through and are of minor importance in this mode

For 3-way valves, the values only apply to the control passage.

$\Delta \mathbf{p}_{stat}$:

Line pressure behind the valve. This essentially corresponds to the dormant pressure when the pump is switched off, for example caused by the fluid level in the system, increased pressure due to pressure tanks, steam pressure, etc.


On valves that close under pressure, the static pressure plus the pump pressure must be used.

Disposal

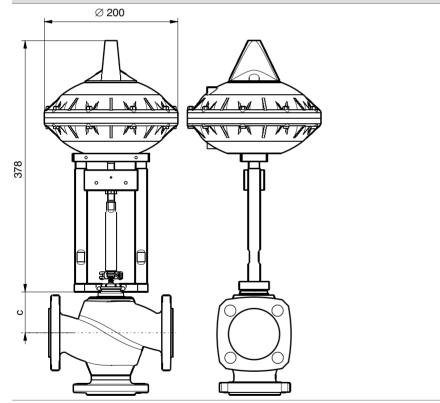
When disposing of the product, observe the currently applicable local laws. More information on materials can be found in the Declaration on materials and the environment for this product.

Dimension drawings

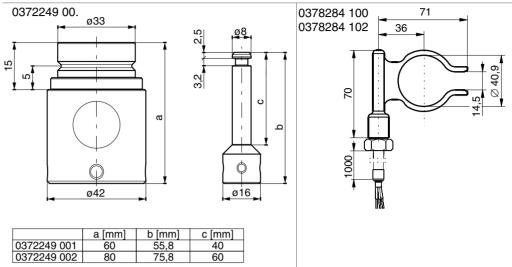
DN15...50

8

50 115 71 230 8 110 14 x 4 20


AVP242F001

40


100 70,5 200

040

050

Accessories

Fr. Sauter AG Im Surinam 55 CH-4016 Basel Tel. +41 61 - 695 55 55 www.sauter-controls.com